If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x-44=0
a = 1; b = -6; c = -44;
Δ = b2-4ac
Δ = -62-4·1·(-44)
Δ = 212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{212}=\sqrt{4*53}=\sqrt{4}*\sqrt{53}=2\sqrt{53}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{53}}{2*1}=\frac{6-2\sqrt{53}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{53}}{2*1}=\frac{6+2\sqrt{53}}{2} $
| x=-57/60+8 | | x^2+(2x+10)(2x+10)=20 | | 2(x+2.4)=64 | | x=3(-19/20)+8 | | 3x+2(6x+21)=117 | | 2(x+2.4)=65 | | 14+x=46;x+32 | | 4(a-2)+3(2a+1=5 | | 5d+2(2-d)=3(1+d) | | -2/3x+1/24=5/12 | | -2(x-23-6=60 | | 20y=-19 | | X+5=4x+8 | | (7-x)×9=36 | | -31x-40x+12=-62 | | 9/y=11/8 | | F(x)=9x^2+6x+4 | | 7^(5x+3)=20 | | 11/x-2=80 | | -3y=2y+15 | | 5x+4=24 | | 12x+9x-2xx=4 | | 5x-3(4x+2)=90 | | 30+57.45x=64.95x | | 2x+4=7x-17 | | 6w+3÷7=6 | | X/2+13-4x-15=21 | | x.3x+4=28 | | 6x+7=4x+10 | | 5v+9)(4+v)=0 | | 3x+4=6x-8=7x-20 | | 5a+8=7a-10 |